

M3Fusion : Un modèle d'apprentissage profond pour la fusion de données satellitaires Multi-{Echelles/Modalités/Temporelles}

Paola Benedetti, Ms.c (paola.benedetti@irstea.fr)

Dino lenco (dino.ienco@irstea.fr)

Raffaele Gaetano (raffaele.gaetano@cirad.fr)

Kenji Osé (kenji.ose@irstea.fr)

Ruggero Pensa (ruggero.pensa@unito.it)

Stephane Dupuy (stephane.dupuy@cirad.fr)

Outline

Earth Observation Data Fusion Challenge

M3F: Spatio-Temporal Data Fusion via Deep Learning

Data Description

Experimental Settings

Results & Findings

Conclusions and Future Works

The Rest of the Re

Nowadays, many earth observation satellite missions exist:

- Sentinel [Senti]
- LandSat-8 [LandSat]
- SPOT 6/7[Spot]

- ...

- Acquired images have different:
- spatial resolution (0.5 30 meters)
- radiometric content (spectral bands)
- temporal resolution (every 5 365 days)

Nowadays, many earth observation satellite missions exist:

- Sentinel [Senti]
- LandSat-8 [LandSat]
- SPOT 6/7[Spot]

- ...

AgroParisTech Verad

- Acquired images have different:
- spatial resolution (0.5 30 meters)
- radiometric content (spectral bands)
- temporal resolution (every 5 365 days)

Main Challenge

How to exploit the complementarity of Satellite information? i.e. How to leverage such heterogeneity for Land Cover?

Different Data fusion scenario [Schmitt16]:

- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion
- And so on....

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016

Different Data fusion scenario [Schmitt16]:

- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion
- And so on....

In our work we focus our effort on the fusion between:

- Sentinel 2 (S2) Time Series
- SPOT6 Very High Spatial Resolution image

Optical Multiple-Sensor/Multi-Temporal/Multi-Scale

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016

Different Data fusion scenario [Schmitt16]:

- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion
- And so on....

AgroParisTech

In our work we focus our effort on the fusion between:

- Sentinel 2 (S2) Time Series
- SPOT6 Very High Spatial Resolution image

Optical Multiple-Sensor/Multi-Temporal/Multi-Scale

To this end, we conceive a Deep Learning approach leveraging:

- Convolutional Neural Network (SPOT6)
- Recurrent Neural Network (S2 Time Series)

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016

M3Fusion: Multi-{Scale/Modality/Temporal} data fusion architecture

Spot 6/7 VHSR image

An example is described by:

- A (multi-dimensional) pixel time series
- A 25 x 25 patch coming from VHSR image

GRU with Attention - Temporal Component

GRU with Attention - Temporal Component

$$z_t = \sigma(W_{zx}x_t + W_{zh}h_{t-1} + b_z)$$

$$r_t = \sigma(W_{rx}x_t + W_{rh}h_{t-1} + b_r)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tanh(W_{hx}x_t + W_{hr}(r_t \odot h_{t-1}) + b_h)$$

We use DropOut to alleviate overfitting

Gated Recurrent Unit:

- Lighter architecture than LSTM
- Recurrent Unit with gates
- Widely employed in NLP

GRU with Attention - Temporal Component

$$z_t = \sigma(W_{zx}x_t + W_{zh}h_{t-1} + b_z)$$

$$r_t = \sigma(W_{rx}x_t + W_{rh}h_{t-1} + b_r)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tanh(W_{hx}x_t + W_{hr}(r_t \odot h_{t-1}) + b_h)$$

We use DropOut to alleviate overfitting

Gated Recurrent Unit:

- Lighter architecture than LSTM
- Recurrent Unit with gates
- Widely employed in NLP

Data sequence: <X1,X2,X3,...,Xn>

Attention Mechanism

Combine the information extracted at each timestamps together

AgroParisTech Øcirad

$$v_{a} = tanh(H \cdot W_{a} + b_{a})$$
$$\lambda = SoftMax(v_{a} \cdot u_{a})$$
$$rnn_{feat} = \sum_{i=1}^{N} \lambda_{i} \cdot h_{t_{i}}$$

i=1

CNN for Spatial Information

CNN for Spatial Information

512@1

CNN for Spatial Information

Loss to Optimise:

AgroParisTech 🥑 Cirad

$$L_{total} = \alpha_1 * L_{rnn}(rnn_{feat}, W_1, b_1) +$$

= $\alpha_2 * L_{cnn}(cnn_{feat}, W_2, b_2) +$
= $L_{fus}([cnn_{feat}, rnn_{feat}], W_3, b_3)$

Categorical Cross-Entropy to compute the Loss of each set of features

512@1

Ent-To-End Process from scratch

RNN Module dedicated to Time Series Data (temporal correlation)

CNN Module dedicated to VHSR data (spatial neighbourhood)

Multi-Scale and Multi-Source data fusion automatically managed by the architecture

Dedicated approach to fuse together Temporal and Non-Termporal information by Deep Learning

[Hou17] S. Hou, X. Liu, Z. Wang: DualNet: Learn Complementary Features for Image Recognition. ICCV 2017: 502-510

Ent-To-End Process from scratch

RNN Module dedicated to Time Series Data (temporal correlation)

CNN Module dedicated to VHSR data (spatial neighbourhood)

Multi-Scale and Multi-Source data fusion automatically managed by the architecture

Dedicated approach to fuse together Temporal and Non-Termporal information by Deep Learning

Auxiliary Classifiers adapted from [Hou17], the goal is to boost the discrimination power of each set fo features independently

In our context, sources are naturally complementary w.r.t the work proposed in [Hou17]

[Hou17] S. Hou, X. Liu, Z. Wang: DualNet: Learn Complementary Features for Image Recognition. ICCV 2017: 502-510

Data Description

Reunion Island Study Site:

- Covered Area: 2512 Km2
- French Department located in Indian Ocean

Goal of the Land cover mapping task: A 13 classes classification

We use two sources of data:

- Time Series of Optical Satellite Images (Sentinel-2)
 - Acquired between April 2016 and May 2017
 - 34 images at 10m of resolution
- A Very High Spatial Resolution (VHSR) Image SPOT6
 - Acquired in April 2016
 - 1 image at 1.5m of resolution (resampled at 2m)

VHSR Image size (in pixels) 33280 X 29565 S2 scene size (in pixels) 6656 x 5913

#DigitAg

Data Description

Reunion Dataset Characteristics

Class	Label	# Objects	# Pixels
1	Crop Cultivations	380	12090
2	Sugar cane	496	84136
3	Orchards	299	15477
4	Forest plantations	67	9783
5	Meadow	257	50596
6	Forest	292	55108
7	Shrubby savannah	371	20287
8	Herbaceous savannah	78	5978
9	Bare rocks	107	18659
10	Urbanized areas	125	36178
11	Greenhouse crops	50	1877
12	Water Surfaces	96	7349
13	Shadows	38	5230

A total of 322 748 pixels (2656 objects) over 13 classes

Reference Data obtained by:

- RPG data (2014)
- GPS record (June 2017)
- Photo interpretation of VHSR Image

Spatial Distribution of Reference Data

Experimental Settings

Training Dataset:

- N. Objects: 30% of the Original Objects (around 800)
- N. Pixels: 97110

Test Dataset:

- N. Objects: 70% of the Original Objects (around 1800)
- N. Pixels: 225638

Competitor:

Common Machine Learning Approach (**Random Forest**) applied on the temporal and non temporal data stacked together

Evaluation Measures (On Test Data):

Accuracy (Global Accuracy) F-Measure (it helps to take into account unbalance class distribution) Kappa Measure

Comparison with Standard ML method

Class	Label
1	Crop Cultivations
2	Sugar cane
3	Orchards
4	Forest plantations
5	Meadow
6	Forest
7	Shrubby savannah
8	Herbaceous savannah
9	Bare rocks
10	Urbanized areas
11	Greenhouse crops
12	Water Surfaces
13	Shadows

Comparison with Standard ML method

M3Fusion

Class	Label
1	Crop Cultivations
2	Sugar cane
3	Orchards
4	Forest plantations
5	Meadow
6	Forest
7	Shrubby savannah
8	Herbaceous savannah
9	Bare rocks
10	Urbanized areas
11	Greenhouse crops
12	Water Surfaces
13	Shadows

Importance/complementary assessment of the information sources

	Accuracy	F-Measure	Kappa
RF_{TS}	0.8543	0.8519	0.8258
$M3F_{TS}$	0.8319	0.8325	0.8033
RF_{VHSR}	0.8237	0.8140	0.7908
$M3F_{VHSR}$	0.8369	0.8364	0.8677
RF	0.8716	0.8681	0.8491
M3F	0.9149	0.9148	0.9000

M3Fusion per-class Analysis

Class	Label
1	Crop Cultivations
2	Sugar cane
3	Orchards
4	Forest plantations
5	Meadow
6	Forest
7	Shrubby savannah
8	Herbaceous savannah
9	Bare rocks
10	Urbanized areas
11	Greenhouse crops
12	Water Surfaces
13	Shadows

AgroParisTech 🥑 cirad

Map Production via ML methods

Random Forest Map

A Map involves around 27M pixels

ten han dé interes i de ten hannes ten dé intertanden dé intertante

- M3Fusion takes about 15h to train (on training data)
- M3Fusion takes about 9h to produce the map on 27M

Map Details on some particular cases

RF

Detail on a Cloudy Zone

M3F

Map Details on some particular cases

Detail on a Cloudy Zone

Detail on Urban Zone

Conclusion and Future Works

A deep architecture to merge Multi-Scale and Multi-Temporal Data

To our knowledge, this is the first DL methods to make this kind of Data Fusion (S2/SPOT6/7)

Performance results underline the effectiveness of the proposed approach

Conclusion and Future Works

A deep architecture to merge Multi-Scale and Multi-Temporal Data

To our knowledge, this is the first DL methods to make this kind of Data Fusion (S2/SPOT6/7)

Performance results underline the effectiveness of the proposed approach

Future Works

Introduce Sentinel-1 time series data

Manage multi-resolution information without down(up)sampling (i.e. Sentinel 2 bands at 20m)

In depth study of the fusion process performed by our model

Thank you for your Attention

Thank you for your Attention

